Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lei Hou, ${ }^{\text {a }}$ Dan Li, ${ }^{\text {a* }}$ Tao Wu, ${ }^{\text {a }}$

 Ye-Gao Yin ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\text {b }}$${ }^{\text {a }}$ Department of Chemistry, Shantou University, Shantou, Guangdong 515063, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: dli@stu.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.040$
$w R$ factor $=0.111$
Data-to-parameter ratio $=14.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

Diiodo(4'-phenyl-2,2': $6^{\prime}, 2^{\prime \prime}$-terpyridine- $\kappa^{3} N$)copper(II)

The Cu atom in the $1 / 1$ adduct of copper(II) diiodide with 4^{\prime} -phenyl-2,2': $6^{\prime}, 2^{\prime \prime}$-terpyridine, $\left[\mathrm{CuI}_{2}\left(\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\right]$, exists in a square-pyramidal environment. The $\mathrm{Cu}-\mathrm{I}_{\text {axial }}$ bond [2.7872 (9) \AA] is significantly longer than the $\mathrm{Cu}-\mathrm{I}_{\text {basal }}$ bond [2.5394 (8) Å].

Comment

$2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-Terpyridine, a commercially available chelating heterocyclic ligand, furnishes complexes with a large range of metal salts, and as the adducts are crystalline, the crystal structures of a plethora of such adducts have been authenticated. For the copper(II) iodide adduct in particular, the metal atom is chelated by the heterocycle in a five-coordinate environment; the geometry is that of a trigonal bipyramid and the N atoms of the outer pyridyl rings span the two apical positions. The Cu atom lies on a twofold axis and the two $\mathrm{Cu}-$ I bonds [2.647 (1) Å] are equivalent (Kutoglu et al., 1991). With the 4-phenyl-substituted heterocycle, the corresponding copper iodide adduct, (I), which was the unexpected product from the reaction of the heterocycle with cuprous iodide, features a Cu atom in a square-pyramidal geometry (Fig. 1). The $\mathrm{Cu}-\mathrm{I}_{\text {axial }}$ bond [2.7872 (9) $\AA \AA$] is significantly longer than the $\mathrm{Cu}-\mathrm{I}_{\mathrm{basal}}$ bond [2.5394 (8) \AA].

(I)

Experimental

4^{\prime}-Phenyl-2, 2': $6^{\prime}, 2^{\prime \prime}$-terpyridine was synthesized according to a published procedure (Constable et al., 1990). This compound (0.031 g , 0.1 mmol) was dissolved in dichloromethane (3 ml) and the solution placed in a narrow glass tube. More dichloromethane (5 ml) was added as a buffer between a saturated potassium iodide solution containing copper(I) iodide ($0.019 \mathrm{~g}, 0.1 \mathrm{mmol}$). Black crystals were formed at the interface in two weeks in about 50% yield.

Received 16 July 2004 Accepted 19 July 2004 Online 24 July 2004

metal-organic papers

Crystal data

$\left[\mathrm{CuI}_{2}\left(\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\right]$
$M_{r}=626.70$
$\mathrm{Monoclinice}^{2} \mathrm{C} 2 / \mathrm{c}$
$a=13.855(1) \AA$
$b=14.995(1) \AA$
$c=19.245(1) \AA$
$\beta=93.571(1){ }^{\circ}$
$V=3990.6(5) \AA^{3}$
$Z=8$

Data collection
Bruker SMART APEX areadetector diffractometer φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.454, T_{\text {max }}=0.604$
10302 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.111$
$S=1.04$
3513 reflections
244 parameters
H -atom parameters constrained
$D_{x}=2.086 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2748
reflections
$\theta=2.7-23.2^{\circ}$
$\mu=4.20 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, black
$0.19 \times 0.18 \times 0.12 \mathrm{~mm}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{I} 1-\mathrm{Cu} 1$	$2.7872(9)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$1.959(5)$
$\mathrm{I} 2-\mathrm{Cu} 1$	$2.5394(8)$	$\mathrm{Cu} 1-\mathrm{N} 3$	$2.069(5)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.079(5)$		
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$78.8(2)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{I} 1$	$100.3(1)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$155.3(2)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{I} 2$	$154.7(1)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{I} 1$	$102.0(1)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{I} 1$	$92.0(1)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{I} 2$	$97.6(1)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{I} 2$	$98.4(1)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 3$	$78.7(2)$	$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{I} 2$	$104.96(3)$

H atoms were placed in calculated positions $[\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\left.U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})\right]$ and were included in the refinement in the ridingmodel approximation. The final difference map had a large peak at $0.5 \AA$ from atom I1.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

Figure 1
ORTEPII (Johnson, 1976) plot of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.

ORTEP-II (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (Nos 20271031 and 29901004), the Natural Science Foundation of Guangdong Province (021240) and the University of Malaya for supporting this study.

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Constable, E. C., Lewis, J., Liptrot, M. C. \& Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47-54.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kutoglu, A., Allmann, R., Folgado, J.-V., Atanasov, M. \& Reinen, D. (1991). Z. Naturforsch. Teil B, 46, 1193-1199.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: © 2004 International Union of Crystallography

